This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| Assertion | tmsms | |- ( D e. ( Met ` X ) -> K e. MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| 2 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 3 | 1 | tmsxms | |- ( D e. ( *Met ` X ) -> K e. *MetSp ) |
| 4 | 2 3 | syl | |- ( D e. ( Met ` X ) -> K e. *MetSp ) |
| 5 | 1 | tmsds | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
| 6 | 2 5 | syl | |- ( D e. ( Met ` X ) -> D = ( dist ` K ) ) |
| 7 | 1 | tmsbas | |- ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) |
| 8 | 2 7 | syl | |- ( D e. ( Met ` X ) -> X = ( Base ` K ) ) |
| 9 | 8 | fveq2d | |- ( D e. ( Met ` X ) -> ( Met ` X ) = ( Met ` ( Base ` K ) ) ) |
| 10 | 6 9 | eleq12d | |- ( D e. ( Met ` X ) -> ( D e. ( Met ` X ) <-> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) ) |
| 11 | 10 | ibi | |- ( D e. ( Met ` X ) -> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) |
| 12 | ssid | |- ( Base ` K ) C_ ( Base ` K ) |
|
| 13 | metres2 | |- ( ( ( dist ` K ) e. ( Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
|
| 14 | 11 12 13 | sylancl | |- ( D e. ( Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
| 15 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 16 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 17 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 18 | 15 16 17 | isms | |- ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) |
| 19 | 4 14 18 | sylanbrc | |- ( D e. ( Met ` X ) -> K e. MetSp ) |