This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tmsbas , tmsds , and tmstopn . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsval.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } | |
| tmsval.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | ||
| Assertion | tmslem | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsval.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } | |
| 2 | tmsval.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| 3 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 4 | basendxltdsndx | ⊢ ( Base ‘ ndx ) < ( dist ‘ ndx ) | |
| 5 | dsndxnn | ⊢ ( dist ‘ ndx ) ∈ ℕ | |
| 6 | 1 4 5 | 2strbas | ⊢ ( 𝑋 ∈ dom ∞Met → 𝑋 = ( Base ‘ 𝑀 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝑀 ) ) |
| 8 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 9 | ffn | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) | |
| 10 | fnresdm | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
| 12 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
| 13 | 1 4 5 12 | 2strop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝑀 ) ) |
| 14 | 13 | reseq1d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 15 | 11 14 | eqtr3d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 16 | 1 2 | tmsval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 17 | 7 15 16 | setsmsbas | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 18 | 7 15 16 | setsmsds | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
| 19 | 13 18 | eqtrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 = ( dist ‘ 𝐾 ) ) |
| 20 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V | |
| 21 | 1 20 | eqeltri | ⊢ 𝑀 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 ∈ V ) |
| 23 | 7 15 16 22 | setsmstopn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
| 24 | 17 19 23 | 3jca | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝐷 = ( dist ‘ 𝐾 ) ∧ ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) ) |