This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tmsbas , tmsds , and tmstopn . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsval.m | |- M = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } |
|
| tmsval.k | |- K = ( toMetSp ` D ) |
||
| Assertion | tmslem | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsval.m | |- M = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } |
|
| 2 | tmsval.k | |- K = ( toMetSp ` D ) |
|
| 3 | elfvdm | |- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
|
| 4 | basendxltdsndx | |- ( Base ` ndx ) < ( dist ` ndx ) |
|
| 5 | dsndxnn | |- ( dist ` ndx ) e. NN |
|
| 6 | 1 4 5 | 2strbas | |- ( X e. dom *Met -> X = ( Base ` M ) ) |
| 7 | 3 6 | syl | |- ( D e. ( *Met ` X ) -> X = ( Base ` M ) ) |
| 8 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 9 | ffn | |- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
|
| 10 | fnresdm | |- ( D Fn ( X X. X ) -> ( D |` ( X X. X ) ) = D ) |
|
| 11 | 8 9 10 | 3syl | |- ( D e. ( *Met ` X ) -> ( D |` ( X X. X ) ) = D ) |
| 12 | dsid | |- dist = Slot ( dist ` ndx ) |
|
| 13 | 1 4 5 12 | 2strop | |- ( D e. ( *Met ` X ) -> D = ( dist ` M ) ) |
| 14 | 13 | reseq1d | |- ( D e. ( *Met ` X ) -> ( D |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 15 | 11 14 | eqtr3d | |- ( D e. ( *Met ` X ) -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 16 | 1 2 | tmsval | |- ( D e. ( *Met ` X ) -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 17 | 7 15 16 | setsmsbas | |- ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) |
| 18 | 7 15 16 | setsmsds | |- ( D e. ( *Met ` X ) -> ( dist ` M ) = ( dist ` K ) ) |
| 19 | 13 18 | eqtrd | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
| 20 | prex | |- { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } e. _V |
|
| 21 | 1 20 | eqeltri | |- M e. _V |
| 22 | 21 | a1i | |- ( D e. ( *Met ` X ) -> M e. _V ) |
| 23 | 7 15 16 22 | setsmstopn | |- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |
| 24 | 17 19 23 | 3jca | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) |