This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsval.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } | |
| tmsval.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | ||
| Assertion | tmsval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsval.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } | |
| 2 | tmsval.k | ⊢ 𝐾 = ( toMetSp ‘ 𝐷 ) | |
| 3 | df-tms | ⊢ toMetSp = ( 𝑑 ∈ ∪ ran ∞Met ↦ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) ) | |
| 4 | dmeq | ⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) | |
| 5 | 4 | dmeqd | ⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
| 6 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 7 | 6 | fdmd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 8 | 7 | dmeqd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
| 9 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
| 11 | 5 10 | sylan9eqr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
| 12 | 11 | opeq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 = 〈 ( Base ‘ ndx ) , 𝑋 〉 ) |
| 13 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 14 | 13 | opeq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( dist ‘ ndx ) , 𝑑 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
| 15 | 12 14 | preq12d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
| 16 | 15 1 | eqtr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } = 𝑀 ) |
| 17 | 13 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ 𝐷 ) ) |
| 18 | 17 | opeq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 = 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) |
| 19 | 16 18 | oveq12d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 20 | fvssunirn | ⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met | |
| 21 | 20 | sseli | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 22 | ovexd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ∈ V ) | |
| 23 | 3 19 21 22 | fvmptd2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝐷 ) = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 24 | 2 23 | eqtrid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |