This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof shortened by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | ||
| setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | ||
| Assertion | setsmsds | ⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| 2 | setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 3 | setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | |
| 4 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
| 5 | dsndxntsetndx | ⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 6 | 4 5 | setsnid | ⊢ ( dist ‘ 𝑀 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
| 7 | 3 | fveq2d | ⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
| 8 | 6 7 | eqtr4id | ⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |