This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmdcn2.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tmdcn2.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tmdcn2.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | tmdcn2 | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdcn2.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tmdcn2.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tmdcn2.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 2 1 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 6 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 7 | 2 6 | tmdcn | ⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 9 | simpr1 | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simpr2 | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) | |
| 11 | 9 10 | opelxpd | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 12 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) | |
| 13 | 5 5 12 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) |
| 14 | toponuni | ⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) → ( 𝐵 × 𝐵 ) = ∪ ( 𝐽 ×t 𝐽 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝐵 × 𝐵 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 16 | 11 15 | eleqtrd | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 〈 𝑋 , 𝑌 〉 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 17 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) | |
| 18 | 17 | cncnpi | ⊢ ( ( ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 19 | 8 16 18 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 20 | simplr | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) | |
| 21 | 1 3 6 | plusfval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 22 | 9 10 21 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 23 | simpr3 | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) ∈ 𝑈 ) |
| 25 | 5 5 19 20 9 10 24 | txcnpi | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) ) |
| 26 | dfss3 | ⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( 𝑢 × 𝑣 ) 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) | |
| 27 | eleq1 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) ) | |
| 28 | 1 6 | plusffn | ⊢ ( +𝑓 ‘ 𝐺 ) Fn ( 𝐵 × 𝐵 ) |
| 29 | elpreima | ⊢ ( ( +𝑓 ‘ 𝐺 ) Fn ( 𝐵 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 31 | 27 30 | bitrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) ) |
| 32 | 31 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝑢 × 𝑣 ) 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 33 | 26 32 | bitri | ⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 34 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 35 | df-ov | ⊢ ( 𝑥 ( +𝑓 ‘ 𝐺 ) 𝑦 ) = ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 36 | 1 3 6 | plusfval | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +𝑓 ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 37 | 35 36 | eqtr3id | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑥 + 𝑦 ) ) |
| 38 | 34 37 | sylbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑥 + 𝑦 ) ) |
| 39 | 38 | eleq1d | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → ( ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 40 | 39 | biimpa | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) → ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 41 | 40 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 42 | 33 41 | sylbi | ⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) → ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 43 | 42 | 3anim3i | ⊢ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 44 | 43 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 45 | 44 | reximi | ⊢ ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 46 | 25 45 | syl | ⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |