This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| thlle.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | ||
| thlle.l | ⊢ ≤ = ( le ‘ 𝐼 ) | ||
| Assertion | thlle | ⊢ ≤ = ( le ‘ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| 2 | thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | thlle.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 4 | thlle.l | ⊢ ≤ = ( le ‘ 𝐼 ) | |
| 5 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 6 | plendxnocndx | ⊢ ( le ‘ ndx ) ≠ ( oc ‘ ndx ) | |
| 7 | 5 6 | setsnid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 8 | 4 7 | eqtri | ⊢ ≤ = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 9 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 10 | 1 2 3 9 | thlval | ⊢ ( 𝑊 ∈ V → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑊 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) ) |
| 12 | 8 11 | eqtr4id | ⊢ ( 𝑊 ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
| 13 | 5 | str0 | ⊢ ∅ = ( le ‘ ∅ ) |
| 14 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 15 | 3 | ipolerval | ⊢ ( 𝐶 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |
| 16 | 14 15 | ax-mp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) |
| 17 | 4 16 | eqtr4i | ⊢ ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } |
| 18 | opabn0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) ) | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 19 20 | prss | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐶 ) |
| 22 | elfvex | ⊢ ( 𝑥 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑊 ∈ V ) | |
| 23 | 22 2 | eleq2s | ⊢ ( 𝑥 ∈ 𝐶 → 𝑊 ∈ V ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
| 25 | 21 24 | sylanbr | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
| 26 | 25 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
| 27 | 18 26 | sylbi | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } ≠ ∅ → 𝑊 ∈ V ) |
| 28 | 27 | necon1bi | ⊢ ( ¬ 𝑊 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ∅ ) |
| 29 | 17 28 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → ≤ = ∅ ) |
| 30 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) | |
| 31 | 1 30 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
| 32 | 31 | fveq2d | ⊢ ( ¬ 𝑊 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ∅ ) ) |
| 33 | 13 29 32 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
| 34 | 12 33 | pm2.61i | ⊢ ≤ = ( le ‘ 𝐾 ) |