This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | |- K = ( toHL ` W ) |
|
| thlbas.c | |- C = ( ClSubSp ` W ) |
||
| thlle.i | |- I = ( toInc ` C ) |
||
| thlle.l | |- .<_ = ( le ` I ) |
||
| Assertion | thlle | |- .<_ = ( le ` K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | |- K = ( toHL ` W ) |
|
| 2 | thlbas.c | |- C = ( ClSubSp ` W ) |
|
| 3 | thlle.i | |- I = ( toInc ` C ) |
|
| 4 | thlle.l | |- .<_ = ( le ` I ) |
|
| 5 | pleid | |- le = Slot ( le ` ndx ) |
|
| 6 | plendxnocndx | |- ( le ` ndx ) =/= ( oc ` ndx ) |
|
| 7 | 5 6 | setsnid | |- ( le ` I ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 8 | 4 7 | eqtri | |- .<_ = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 9 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 10 | 1 2 3 9 | thlval | |- ( W e. _V -> K = ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 11 | 10 | fveq2d | |- ( W e. _V -> ( le ` K ) = ( le ` ( I sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) ) |
| 12 | 8 11 | eqtr4id | |- ( W e. _V -> .<_ = ( le ` K ) ) |
| 13 | 5 | str0 | |- (/) = ( le ` (/) ) |
| 14 | 2 | fvexi | |- C e. _V |
| 15 | 3 | ipolerval | |- ( C e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) ) |
| 16 | 14 15 | ax-mp | |- { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = ( le ` I ) |
| 17 | 4 16 | eqtr4i | |- .<_ = { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } |
| 18 | opabn0 | |- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) <-> E. x E. y ( { x , y } C_ C /\ x C_ y ) ) |
|
| 19 | vex | |- x e. _V |
|
| 20 | vex | |- y e. _V |
|
| 21 | 19 20 | prss | |- ( ( x e. C /\ y e. C ) <-> { x , y } C_ C ) |
| 22 | elfvex | |- ( x e. ( ClSubSp ` W ) -> W e. _V ) |
|
| 23 | 22 2 | eleq2s | |- ( x e. C -> W e. _V ) |
| 24 | 23 | ad2antrr | |- ( ( ( x e. C /\ y e. C ) /\ x C_ y ) -> W e. _V ) |
| 25 | 21 24 | sylanbr | |- ( ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
| 26 | 25 | exlimivv | |- ( E. x E. y ( { x , y } C_ C /\ x C_ y ) -> W e. _V ) |
| 27 | 18 26 | sylbi | |- ( { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } =/= (/) -> W e. _V ) |
| 28 | 27 | necon1bi | |- ( -. W e. _V -> { <. x , y >. | ( { x , y } C_ C /\ x C_ y ) } = (/) ) |
| 29 | 17 28 | eqtrid | |- ( -. W e. _V -> .<_ = (/) ) |
| 30 | fvprc | |- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
|
| 31 | 1 30 | eqtrid | |- ( -. W e. _V -> K = (/) ) |
| 32 | 31 | fveq2d | |- ( -. W e. _V -> ( le ` K ) = ( le ` (/) ) ) |
| 33 | 13 29 32 | 3eqtr4a | |- ( -. W e. _V -> .<_ = ( le ` K ) ) |
| 34 | 12 33 | pm2.61i | |- .<_ = ( le ` K ) |