This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle . (Contributed by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | plendxnocndx | ⊢ ( le ‘ ndx ) ≠ ( oc ‘ ndx ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10re | ⊢ ; 1 0 ∈ ℝ | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 1nn | ⊢ 1 ∈ ℕ | |
| 5 | 0lt1 | ⊢ 0 < 1 | |
| 6 | 2 3 4 5 | declt | ⊢ ; 1 0 < ; 1 1 |
| 7 | 1 6 | ltneii | ⊢ ; 1 0 ≠ ; 1 1 |
| 8 | plendx | ⊢ ( le ‘ ndx ) = ; 1 0 | |
| 9 | ocndx | ⊢ ( oc ‘ ndx ) = ; 1 1 | |
| 10 | 8 9 | neeq12i | ⊢ ( ( le ‘ ndx ) ≠ ( oc ‘ ndx ) ↔ ; 1 0 ≠ ; 1 1 ) |
| 11 | 7 10 | mpbir | ⊢ ( le ‘ ndx ) ≠ ( oc ‘ ndx ) |