This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ipoval.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| Assertion | ipolerval | ⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoval.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | simpl | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) → { 𝑥 , 𝑦 } ⊆ 𝐹 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | prss | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐹 ) |
| 6 | 2 5 | sylibr | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) |
| 7 | 6 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) } |
| 8 | df-xp | ⊢ ( 𝐹 × 𝐹 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) } | |
| 9 | 7 8 | sseqtrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⊆ ( 𝐹 × 𝐹 ) |
| 10 | sqxpexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 × 𝐹 ) ∈ V ) | |
| 11 | ssexg | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⊆ ( 𝐹 × 𝐹 ) ∧ ( 𝐹 × 𝐹 ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ∈ V ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ∈ V ) |
| 13 | ipostr | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) Struct 〈 1 , ; 1 1 〉 | |
| 14 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 15 | snsspr1 | ⊢ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 } ⊆ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } | |
| 16 | ssun2 | ⊢ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) | |
| 17 | 15 16 | sstri | ⊢ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) |
| 18 | 13 14 17 | strfv | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) ) |
| 19 | 12 18 | syl | ⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) ) |
| 20 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } | |
| 21 | 1 20 | ipoval | ⊢ ( 𝐹 ∈ 𝑉 → 𝐼 = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝐹 ∈ 𝑉 → ( le ‘ 𝐼 ) = ( le ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) ) |
| 23 | 19 22 | eqtr4d | ⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |