This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of thincmo . (Contributed by Zhi Wang, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincmo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincmo.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | thincmoALT | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | thincmo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | thincmo.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | 4 5 | isthinc | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐶 ∈ ThinCat → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 9 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 9 | eleq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 11 | 10 | mobidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 12 | 11 | rspc2gv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 13 | 2 3 12 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 14 | 8 13 | mpd | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |