This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspc2gv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | rspc2gv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2gv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑊 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) | |
| 4 | 3 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ↔ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 6 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) | |
| 7 | 6 | bicomi | ⊢ ( ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 9 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) | |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) | |
| 11 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) | |
| 12 | 10 11 | bi2anan9 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) ) |
| 13 | 12 1 | imbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 14 | 9 13 | bitr3id | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 15 | 14 | spc2gv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 16 | 15 | pm2.43a | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → 𝜓 ) ) |
| 17 | 8 16 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → 𝜓 ) ) |
| 18 | 5 17 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) → 𝜓 ) ) |
| 19 | 2 18 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜑 → 𝜓 ) ) |