This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincn0eu.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| thincn0eu.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| Assertion | thincmod | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | thincn0eu.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 5 | thincn0eu.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 6 | 2 4 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 7 | 3 4 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 10 | 1 6 7 8 9 | thincmo | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 11 | 5 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 13 | 12 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 14 | 10 13 | mpbird | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |