This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of thincmo . (Contributed by Zhi Wang, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| thincmo.x | |- ( ph -> X e. B ) |
||
| thincmo.y | |- ( ph -> Y e. B ) |
||
| thincmo.b | |- B = ( Base ` C ) |
||
| thincmo.h | |- H = ( Hom ` C ) |
||
| Assertion | thincmoALT | |- ( ph -> E* f f e. ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincmo.x | |- ( ph -> X e. B ) |
|
| 3 | thincmo.y | |- ( ph -> Y e. B ) |
|
| 4 | thincmo.b | |- B = ( Base ` C ) |
|
| 5 | thincmo.h | |- H = ( Hom ` C ) |
|
| 6 | 4 5 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) |
| 7 | 6 | simprbi | |- ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
| 8 | 1 7 | syl | |- ( ph -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
| 9 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
|
| 10 | 9 | eleq2d | |- ( ( x = X /\ y = Y ) -> ( f e. ( x H y ) <-> f e. ( X H Y ) ) ) |
| 11 | 10 | mobidv | |- ( ( x = X /\ y = Y ) -> ( E* f f e. ( x H y ) <-> E* f f e. ( X H Y ) ) ) |
| 12 | 11 | rspc2gv | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B E* f f e. ( x H y ) -> E* f f e. ( X H Y ) ) ) |
| 13 | 2 3 12 | syl2anc | |- ( ph -> ( A. x e. B A. y e. B E* f f e. ( x H y ) -> E* f f e. ( X H Y ) ) ) |
| 14 | 8 13 | mpd | |- ( ph -> E* f f e. ( X H Y ) ) |