This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi . (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincid.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| thincid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| Assertion | thincepi | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincid.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | thincid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | thincmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | thincepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 7 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 8 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 9 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ) | |
| 10 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) | |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝐶 ∈ ThinCat ) |
| 12 | 7 8 9 10 2 3 11 | thincmo2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → 𝑔 = ℎ ) |
| 13 | 12 | a1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) → 𝑔 = ℎ ) ) |
| 14 | 13 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) → 𝑔 = ℎ ) ) |
| 15 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 16 | 1 | thinccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 17 | 2 3 15 6 16 4 5 | isepi2 | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑌 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) → 𝑔 = ℎ ) ) ) ) |
| 18 | 14 17 | mpbiran2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐸 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 19 | 18 | eqrdv | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |