This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi . (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincid.c | |- ( ph -> C e. ThinCat ) |
|
| thincid.b | |- B = ( Base ` C ) |
||
| thincid.h | |- H = ( Hom ` C ) |
||
| thincid.x | |- ( ph -> X e. B ) |
||
| thincmon.y | |- ( ph -> Y e. B ) |
||
| thincepi.e | |- E = ( Epi ` C ) |
||
| Assertion | thincepi | |- ( ph -> ( X E Y ) = ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincid.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincid.b | |- B = ( Base ` C ) |
|
| 3 | thincid.h | |- H = ( Hom ` C ) |
|
| 4 | thincid.x | |- ( ph -> X e. B ) |
|
| 5 | thincmon.y | |- ( ph -> Y e. B ) |
|
| 6 | thincepi.e | |- E = ( Epi ` C ) |
|
| 7 | 5 | adantr | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> Y e. B ) |
| 8 | simpr1 | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> z e. B ) |
|
| 9 | simpr2 | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> g e. ( Y H z ) ) |
|
| 10 | simpr3 | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> h e. ( Y H z ) ) |
|
| 11 | 1 | adantr | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> C e. ThinCat ) |
| 12 | 7 8 9 10 2 3 11 | thincmo2 | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> g = h ) |
| 13 | 12 | a1d | |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> ( ( g ( <. X , Y >. ( comp ` C ) z ) f ) = ( h ( <. X , Y >. ( comp ` C ) z ) f ) -> g = h ) ) |
| 14 | 13 | ralrimivvva | |- ( ph -> A. z e. B A. g e. ( Y H z ) A. h e. ( Y H z ) ( ( g ( <. X , Y >. ( comp ` C ) z ) f ) = ( h ( <. X , Y >. ( comp ` C ) z ) f ) -> g = h ) ) |
| 15 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 16 | 1 | thinccd | |- ( ph -> C e. Cat ) |
| 17 | 2 3 15 6 16 4 5 | isepi2 | |- ( ph -> ( f e. ( X E Y ) <-> ( f e. ( X H Y ) /\ A. z e. B A. g e. ( Y H z ) A. h e. ( Y H z ) ( ( g ( <. X , Y >. ( comp ` C ) z ) f ) = ( h ( <. X , Y >. ( comp ` C ) z ) f ) -> g = h ) ) ) ) |
| 18 | 14 17 | mpbiran2d | |- ( ph -> ( f e. ( X E Y ) <-> f e. ( X H Y ) ) ) |
| 19 | 18 | eqrdv | |- ( ph -> ( X E Y ) = ( X H Y ) ) |