This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isthincd2 . (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthincd2lem2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| isthincd2lem2.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isthincd2lem2.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| isthincd2lem2.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| isthincd2lem2.5 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| isthincd2lem2.6 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) | ||
| Assertion | isthincd2lem2 | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 2 | isthincd2lem2.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | isthincd2lem2.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 4 | isthincd2lem2.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 5 | isthincd2lem2.5 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 6 | isthincd2lem2.6 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐻 𝑦 ) = ( 𝑤 𝐻 𝑦 ) ) | |
| 8 | opeq1 | ⊢ ( 𝑥 = 𝑤 → 〈 𝑥 , 𝑦 〉 = 〈 𝑤 , 𝑦 〉 ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 𝑤 → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) ) |
| 10 | 9 | oveqd | ⊢ ( 𝑥 = 𝑤 → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐻 𝑧 ) = ( 𝑤 𝐻 𝑧 ) ) | |
| 12 | 10 11 | eleq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 14 | 7 13 | raleqbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑤 𝐻 𝑦 ) = ( 𝑤 𝐻 𝑣 ) ) | |
| 16 | oveq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 𝐻 𝑧 ) = ( 𝑣 𝐻 𝑧 ) ) | |
| 17 | opeq2 | ⊢ ( 𝑦 = 𝑣 → 〈 𝑤 , 𝑦 〉 = 〈 𝑤 , 𝑣 〉 ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑦 = 𝑣 → ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) ) |
| 19 | 18 | oveqd | ⊢ ( 𝑦 = 𝑣 → ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ) |
| 20 | 19 | eleq1d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 21 | 16 20 | raleqbidv | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 22 | 15 21 | raleqbidv | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑣 𝐻 𝑧 ) = ( 𝑣 𝐻 𝑢 ) ) | |
| 24 | oveq2 | ⊢ ( 𝑧 = 𝑢 → ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) = ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) ) | |
| 25 | 24 | oveqd | ⊢ ( 𝑧 = 𝑢 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ) |
| 26 | oveq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑤 𝐻 𝑧 ) = ( 𝑤 𝐻 𝑢 ) ) | |
| 27 | 25 26 | eleq12d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 28 | 23 27 | raleqbidv | ⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 30 | oveq2 | ⊢ ( 𝑓 = 𝑘 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) = ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑓 = 𝑘 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 32 | oveq1 | ⊢ ( 𝑔 = 𝑙 → ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝑔 = 𝑙 → ( ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 34 | 31 33 | cbvral2vw | ⊢ ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
| 35 | 29 34 | bitrdi | ⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑓 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑔 ∈ ( 𝑣 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑣 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑤 𝐻 𝑧 ) ↔ ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) ) |
| 36 | 14 22 35 | cbvral3vw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
| 37 | 6 36 | sylib | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ) |
| 38 | oveq1 | ⊢ ( 𝑤 = 𝑋 → ( 𝑤 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑣 ) ) | |
| 39 | opeq1 | ⊢ ( 𝑤 = 𝑋 → 〈 𝑤 , 𝑣 〉 = 〈 𝑋 , 𝑣 〉 ) | |
| 40 | 39 | oveq1d | ⊢ ( 𝑤 = 𝑋 → ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) ) |
| 41 | 40 | oveqd | ⊢ ( 𝑤 = 𝑋 → ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ) |
| 42 | oveq1 | ⊢ ( 𝑤 = 𝑋 → ( 𝑤 𝐻 𝑢 ) = ( 𝑋 𝐻 𝑢 ) ) | |
| 43 | 41 42 | eleq12d | ⊢ ( 𝑤 = 𝑋 → ( ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 44 | 43 | ralbidv | ⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 45 | 38 44 | raleqbidv | ⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 46 | oveq2 | ⊢ ( 𝑣 = 𝑌 → ( 𝑋 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 47 | oveq1 | ⊢ ( 𝑣 = 𝑌 → ( 𝑣 𝐻 𝑢 ) = ( 𝑌 𝐻 𝑢 ) ) | |
| 48 | opeq2 | ⊢ ( 𝑣 = 𝑌 → 〈 𝑋 , 𝑣 〉 = 〈 𝑋 , 𝑌 〉 ) | |
| 49 | 48 | oveq1d | ⊢ ( 𝑣 = 𝑌 → ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) ) |
| 50 | 49 | oveqd | ⊢ ( 𝑣 = 𝑌 → ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ) |
| 51 | 50 | eleq1d | ⊢ ( 𝑣 = 𝑌 → ( ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 52 | 47 51 | raleqbidv | ⊢ ( 𝑣 = 𝑌 → ( ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 53 | 46 52 | raleqbidv | ⊢ ( 𝑣 = 𝑌 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ) ) |
| 54 | oveq2 | ⊢ ( 𝑢 = 𝑍 → ( 𝑌 𝐻 𝑢 ) = ( 𝑌 𝐻 𝑍 ) ) | |
| 55 | oveq2 | ⊢ ( 𝑢 = 𝑍 → ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) | |
| 56 | 55 | oveqd | ⊢ ( 𝑢 = 𝑍 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ) |
| 57 | oveq2 | ⊢ ( 𝑢 = 𝑍 → ( 𝑋 𝐻 𝑢 ) = ( 𝑋 𝐻 𝑍 ) ) | |
| 58 | 56 57 | eleq12d | ⊢ ( 𝑢 = 𝑍 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 59 | 54 58 | raleqbidv | ⊢ ( 𝑢 = 𝑍 → ( ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 60 | 59 | ralbidv | ⊢ ( 𝑢 = 𝑍 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑢 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 61 | 45 53 60 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 62 | 1 2 3 61 | syl3anc | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑤 𝐻 𝑣 ) ∀ 𝑙 ∈ ( 𝑣 𝐻 𝑢 ) ( 𝑙 ( 〈 𝑤 , 𝑣 〉 · 𝑢 ) 𝑘 ) ∈ ( 𝑤 𝐻 𝑢 ) → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 63 | 37 62 | mpd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 64 | oveq2 | ⊢ ( 𝑘 = 𝐹 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) = ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) | |
| 65 | 64 | eleq1d | ⊢ ( 𝑘 = 𝐹 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) ↔ ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 66 | oveq1 | ⊢ ( 𝑙 = 𝐺 → ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑙 = 𝐺 → ( ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 68 | 65 67 | rspc2v | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 69 | 4 5 68 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝑙 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑘 ) ∈ ( 𝑋 𝐻 𝑍 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
| 70 | 63 69 | mpd | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |