This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso2.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| thincciso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincciso2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| thincciso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincciso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincciso2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| thincciso2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| thincciso3.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | ||
| Assertion | thincciso3 | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso2.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | thincciso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincciso2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | thincciso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | thincciso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | thincciso2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | thincciso2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | thincciso3.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | |
| 9 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 10 | 1 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 12 | 2 9 11 4 5 6 | invf | ⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| 13 | 12 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 14 | 1 2 3 5 4 6 13 8 | thincciso2 | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) |