This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basgen | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐽 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐽 ) ) |
| 3 | tgtop | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| 5 | 2 4 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ 𝐽 ) |
| 6 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 7 | 5 6 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 ) |