This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is a subset of any clopen set containing A . (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| Assertion | conncompclo | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) | |
| 5 | 4 | elin1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ 𝐽 ) |
| 6 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ⊆ 𝑋 ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ⊆ 𝑋 ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑇 ) | |
| 9 | 7 8 | sseldd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑋 ) |
| 10 | 1 | conncompcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | 3 9 10 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 12 | 2 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 14 | 1 | conncompconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 15 | 3 9 14 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 16 | 1 | conncompid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
| 17 | 3 9 16 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑆 ) |
| 18 | inelcm | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑆 ) ≠ ∅ ) | |
| 19 | 8 17 18 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝑇 ∩ 𝑆 ) ≠ ∅ ) |
| 20 | 4 | elin2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 21 | 2 13 15 5 19 20 | connsubclo | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ∈ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |