This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpconncomp.x | |- X = ( Base ` G ) |
|
| tgpconncomp.z | |- .0. = ( 0g ` G ) |
||
| tgpconncomp.j | |- J = ( TopOpen ` G ) |
||
| tgpconncomp.s | |- S = U. { x e. ~P X | ( .0. e. x /\ ( J |`t x ) e. Conn ) } |
||
| Assertion | tgpconncompss | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> S C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpconncomp.x | |- X = ( Base ` G ) |
|
| 2 | tgpconncomp.z | |- .0. = ( 0g ` G ) |
|
| 3 | tgpconncomp.j | |- J = ( TopOpen ` G ) |
|
| 4 | tgpconncomp.s | |- S = U. { x e. ~P X | ( .0. e. x /\ ( J |`t x ) e. Conn ) } |
|
| 5 | 3 1 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` X ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> J e. ( TopOn ` X ) ) |
| 7 | simp3 | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. J ) |
|
| 8 | 3 | opnsubg | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. ( Clsd ` J ) ) |
| 9 | 7 8 | elind | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> T e. ( J i^i ( Clsd ` J ) ) ) |
| 10 | 2 | subg0cl | |- ( T e. ( SubGrp ` G ) -> .0. e. T ) |
| 11 | 10 | 3ad2ant2 | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> .0. e. T ) |
| 12 | 4 | conncompclo | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ .0. e. T ) -> S C_ T ) |
| 13 | 6 9 11 12 | syl3anc | |- ( ( G e. TopGrp /\ T e. ( SubGrp ` G ) /\ T e. J ) -> S C_ T ) |