This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Without using ax-rep , show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| Assertion | tfrlem9a | ⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 2 | 1 | tfrlem7 | ⊢ Fun recs ( 𝐹 ) |
| 3 | funfvop | ⊢ ( ( Fun recs ( 𝐹 ) ∧ 𝐵 ∈ dom recs ( 𝐹 ) ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ) |
| 5 | 1 | recsfval | ⊢ recs ( 𝐹 ) = ∪ 𝐴 |
| 6 | 5 | eleq2i | ⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ↔ 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ ∪ 𝐴 ) |
| 7 | eluni | ⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ↔ ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
| 9 | 4 8 | sylib | ⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
| 10 | simprr | ⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → 𝑔 ∈ 𝐴 ) | |
| 11 | vex | ⊢ 𝑔 ∈ V | |
| 12 | 1 11 | tfrlem3a | ⊢ ( 𝑔 ∈ 𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) ) |
| 13 | 10 12 | sylib | ⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) ) |
| 14 | 2 | a1i | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → Fun recs ( 𝐹 ) ) |
| 15 | simplrr | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ∈ 𝐴 ) | |
| 16 | elssuni | ⊢ ( 𝑔 ∈ 𝐴 → 𝑔 ⊆ ∪ 𝐴 ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ⊆ ∪ 𝐴 ) |
| 18 | 17 5 | sseqtrrdi | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ⊆ recs ( 𝐹 ) ) |
| 19 | fndm | ⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) | |
| 20 | 19 | ad2antll | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → dom 𝑔 = 𝑧 ) |
| 21 | simprl | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑧 ∈ On ) | |
| 22 | 20 21 | eqeltrd | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → dom 𝑔 ∈ On ) |
| 23 | eloni | ⊢ ( dom 𝑔 ∈ On → Ord dom 𝑔 ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → Ord dom 𝑔 ) |
| 25 | simpll | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ∈ dom recs ( 𝐹 ) ) | |
| 26 | fvexd | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ‘ 𝐵 ) ∈ V ) | |
| 27 | simplrl | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ) | |
| 28 | df-br | ⊢ ( 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ↔ 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ) |
| 30 | breldmg | ⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( recs ( 𝐹 ) ‘ 𝐵 ) ∈ V ∧ 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑔 ) | |
| 31 | 25 26 29 30 | syl3anc | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ∈ dom 𝑔 ) |
| 32 | ordelss | ⊢ ( ( Ord dom 𝑔 ∧ 𝐵 ∈ dom 𝑔 ) → 𝐵 ⊆ dom 𝑔 ) | |
| 33 | 24 31 32 | syl2anc | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ⊆ dom 𝑔 ) |
| 34 | fun2ssres | ⊢ ( ( Fun recs ( 𝐹 ) ∧ 𝑔 ⊆ recs ( 𝐹 ) ∧ 𝐵 ⊆ dom 𝑔 ) → ( recs ( 𝐹 ) ↾ 𝐵 ) = ( 𝑔 ↾ 𝐵 ) ) | |
| 35 | 14 18 33 34 | syl3anc | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) = ( 𝑔 ↾ 𝐵 ) ) |
| 36 | 11 | resex | ⊢ ( 𝑔 ↾ 𝐵 ) ∈ V |
| 37 | 36 | a1i | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( 𝑔 ↾ 𝐵 ) ∈ V ) |
| 38 | 35 37 | eqeltrd | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |
| 39 | 38 | expr | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ 𝑧 ∈ On ) → ( 𝑔 Fn 𝑧 → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
| 40 | 39 | adantrd | ⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
| 41 | 40 | rexlimdva | ⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
| 42 | 13 41 | mpd | ⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |
| 43 | 9 42 | exlimddv | ⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |