This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994) (Revised by Mario Carneiro, 24-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| Assertion | tfrlem7 | ⊢ Fun recs ( 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 2 | 1 | tfrlem6 | ⊢ Rel recs ( 𝐹 ) |
| 3 | 1 | recsfval | ⊢ recs ( 𝐹 ) = ∪ 𝐴 |
| 4 | 3 | eleq2i | ⊢ ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ↔ 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐴 ) |
| 5 | eluni | ⊢ ( 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑔 ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ↔ ∃ 𝑔 ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
| 7 | 3 | eleq2i | ⊢ ( 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ↔ 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐴 ) |
| 8 | eluni | ⊢ ( 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐴 ↔ ∃ ℎ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ↔ ∃ ℎ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) |
| 10 | 6 9 | anbi12i | ⊢ ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) ↔ ( ∃ 𝑔 ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ∃ ℎ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) ) |
| 11 | exdistrv | ⊢ ( ∃ 𝑔 ∃ ℎ ( ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) ↔ ( ∃ 𝑔 ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ∃ ℎ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) ↔ ∃ 𝑔 ∃ ℎ ( ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) ) |
| 13 | df-br | ⊢ ( 𝑥 𝑔 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) | |
| 14 | df-br | ⊢ ( 𝑥 ℎ 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ ℎ ) | |
| 15 | 13 14 | anbi12i | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 〈 𝑥 , 𝑣 〉 ∈ ℎ ) ) |
| 16 | 1 | tfrlem5 | ⊢ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 17 | 16 | impcom | ⊢ ( ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) ) → 𝑢 = 𝑣 ) |
| 18 | 15 17 | sylanbr | ⊢ ( ( ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 〈 𝑥 , 𝑣 〉 ∈ ℎ ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴 ) ) → 𝑢 = 𝑣 ) |
| 19 | 18 | an4s | ⊢ ( ( ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) → 𝑢 = 𝑣 ) |
| 20 | 19 | exlimivv | ⊢ ( ∃ 𝑔 ∃ ℎ ( ( 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑣 〉 ∈ ℎ ∧ ℎ ∈ 𝐴 ) ) → 𝑢 = 𝑣 ) |
| 21 | 12 20 | sylbi | ⊢ ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) → 𝑢 = 𝑣 ) |
| 22 | 21 | ax-gen | ⊢ ∀ 𝑣 ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) → 𝑢 = 𝑣 ) |
| 23 | 22 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) → 𝑢 = 𝑣 ) |
| 24 | dffun4 | ⊢ ( Fun recs ( 𝐹 ) ↔ ( Rel recs ( 𝐹 ) ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 〈 𝑥 , 𝑢 〉 ∈ recs ( 𝐹 ) ∧ 〈 𝑥 , 𝑣 〉 ∈ recs ( 𝐹 ) ) → 𝑢 = 𝑣 ) ) ) | |
| 25 | 2 23 24 | mpbir2an | ⊢ Fun recs ( 𝐹 ) |