This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994) (Proof shortened by Alan Sare, 11-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| Assertion | tfrlem8 | ⊢ Ord dom recs ( 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | ⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 2 | 1 | tfrlem3 | ⊢ 𝐴 = { 𝑔 ∣ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) } |
| 3 | 2 | eqabri | ⊢ ( 𝑔 ∈ 𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) ) |
| 4 | fndm | ⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 = 𝑧 ) |
| 6 | 5 | eleq1d | ⊢ ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → ( dom 𝑔 ∈ On ↔ 𝑧 ∈ On ) ) |
| 7 | 6 | biimprcd | ⊢ ( 𝑧 ∈ On → ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 ∈ On ) ) |
| 8 | 7 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 ∈ On ) |
| 9 | 3 8 | sylbi | ⊢ ( 𝑔 ∈ 𝐴 → dom 𝑔 ∈ On ) |
| 10 | eleq1a | ⊢ ( dom 𝑔 ∈ On → ( 𝑧 = dom 𝑔 → 𝑧 ∈ On ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑔 ∈ 𝐴 → ( 𝑧 = dom 𝑔 → 𝑧 ∈ On ) ) |
| 12 | 11 | rexlimiv | ⊢ ( ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On ) |
| 13 | 12 | abssi | ⊢ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ⊆ On |
| 14 | ssorduni | ⊢ ( { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ⊆ On → Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) | |
| 15 | 13 14 | ax-mp | ⊢ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
| 16 | 1 | recsfval | ⊢ recs ( 𝐹 ) = ∪ 𝐴 |
| 17 | 16 | dmeqi | ⊢ dom recs ( 𝐹 ) = dom ∪ 𝐴 |
| 18 | dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
| 19 | vex | ⊢ 𝑔 ∈ V | |
| 20 | 19 | dmex | ⊢ dom 𝑔 ∈ V |
| 21 | 20 | dfiun2 | ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
| 22 | 17 18 21 | 3eqtri | ⊢ dom recs ( 𝐹 ) = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
| 23 | ordeq | ⊢ ( dom recs ( 𝐹 ) = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } → ( Ord dom recs ( 𝐹 ) ↔ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( Ord dom recs ( 𝐹 ) ↔ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) |
| 25 | 15 24 | mpbir | ⊢ Ord dom recs ( 𝐹 ) |