This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfis.1 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) | |
| Assertion | tfis | ⊢ ( 𝑥 ∈ On → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis.1 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 4 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝜑 } | |
| 5 | 3 4 | nfss | ⊢ Ⅎ 𝑥 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } |
| 6 | 4 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } |
| 7 | 5 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 8 | dfss3 | ⊢ ( 𝑥 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) | |
| 9 | sseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ↔ 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ) ) | |
| 10 | 8 9 | bitr3id | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
| 11 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑥 ∈ On ∧ 𝜑 ) ) | |
| 12 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) | |
| 13 | 11 12 | bitr3id | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ On ∧ 𝜑 ) ↔ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
| 14 | 10 13 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝑥 ∈ On ∧ 𝜑 ) ) ↔ ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) ) |
| 15 | sbequ | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 On | |
| 17 | nfcv | ⊢ Ⅎ 𝑤 On | |
| 18 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 19 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 20 | sbequ12 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) | |
| 21 | 16 17 18 19 20 | cbvrabw | ⊢ { 𝑥 ∈ On ∣ 𝜑 } = { 𝑤 ∈ On ∣ [ 𝑤 / 𝑥 ] 𝜑 } |
| 22 | 15 21 | elrab2 | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑦 ∈ On ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 23 | 22 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 24 | 23 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 25 | 24 1 | syl5 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → 𝜑 ) ) |
| 26 | 25 | anc2li | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝑥 ∈ On ∧ 𝜑 ) ) ) |
| 27 | 3 7 14 26 | vtoclgaf | ⊢ ( 𝑧 ∈ On → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
| 28 | 27 | rgen | ⊢ ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 29 | tfi | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) → { 𝑥 ∈ On ∣ 𝜑 } = On ) | |
| 30 | 2 28 29 | mp2an | ⊢ { 𝑥 ∈ On ∣ 𝜑 } = On |
| 31 | 30 | eqcomi | ⊢ On = { 𝑥 ∈ On ∣ 𝜑 } |
| 32 | 31 | reqabi | ⊢ ( 𝑥 ∈ On ↔ ( 𝑥 ∈ On ∧ 𝜑 ) ) |
| 33 | 32 | simprbi | ⊢ ( 𝑥 ∈ On → 𝜑 ) |