This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfis.1 | ||
| Assertion | tfis |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis.1 | ||
| 2 | ssrab2 | ||
| 3 | nfcv | ||
| 4 | nfrab1 | ||
| 5 | 3 4 | nfss | |
| 6 | 4 | nfcri | |
| 7 | 5 6 | nfim | |
| 8 | dfss3 | ||
| 9 | sseq1 | ||
| 10 | 8 9 | bitr3id | |
| 11 | rabid | ||
| 12 | eleq1w | ||
| 13 | 11 12 | bitr3id | |
| 14 | 10 13 | imbi12d | |
| 15 | sbequ | ||
| 16 | nfcv | ||
| 17 | nfcv | ||
| 18 | nfv | ||
| 19 | nfs1v | ||
| 20 | sbequ12 | ||
| 21 | 16 17 18 19 20 | cbvrabw | |
| 22 | 15 21 | elrab2 | |
| 23 | 22 | simprbi | |
| 24 | 23 | ralimi | |
| 25 | 24 1 | syl5 | |
| 26 | 25 | anc2li | |
| 27 | 3 7 14 26 | vtoclgaf | |
| 28 | 27 | rgen | |
| 29 | tfi | ||
| 30 | 2 28 29 | mp2an | |
| 31 | 30 | eqcomi | |
| 32 | 31 | reqabi | |
| 33 | 32 | simprbi |