This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfis2f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| tfis2f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| tfis2f.3 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | ||
| Assertion | tfis2f | ⊢ ( 𝑥 ∈ On → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | tfis2f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | tfis2f.3 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | |
| 4 | 1 2 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 6 | 5 3 | biimtrid | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) |
| 7 | 6 | tfis | ⊢ ( 𝑥 ∈ On → 𝜑 ) |