This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of Enderton p. 200. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 20-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfis.1 | |- ( x e. On -> ( A. y e. x [ y / x ] ph -> ph ) ) |
|
| Assertion | tfis | |- ( x e. On -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis.1 | |- ( x e. On -> ( A. y e. x [ y / x ] ph -> ph ) ) |
|
| 2 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 3 | nfcv | |- F/_ x z |
|
| 4 | nfrab1 | |- F/_ x { x e. On | ph } |
|
| 5 | 3 4 | nfss | |- F/ x z C_ { x e. On | ph } |
| 6 | 4 | nfcri | |- F/ x z e. { x e. On | ph } |
| 7 | 5 6 | nfim | |- F/ x ( z C_ { x e. On | ph } -> z e. { x e. On | ph } ) |
| 8 | dfss3 | |- ( x C_ { x e. On | ph } <-> A. y e. x y e. { x e. On | ph } ) |
|
| 9 | sseq1 | |- ( x = z -> ( x C_ { x e. On | ph } <-> z C_ { x e. On | ph } ) ) |
|
| 10 | 8 9 | bitr3id | |- ( x = z -> ( A. y e. x y e. { x e. On | ph } <-> z C_ { x e. On | ph } ) ) |
| 11 | rabid | |- ( x e. { x e. On | ph } <-> ( x e. On /\ ph ) ) |
|
| 12 | eleq1w | |- ( x = z -> ( x e. { x e. On | ph } <-> z e. { x e. On | ph } ) ) |
|
| 13 | 11 12 | bitr3id | |- ( x = z -> ( ( x e. On /\ ph ) <-> z e. { x e. On | ph } ) ) |
| 14 | 10 13 | imbi12d | |- ( x = z -> ( ( A. y e. x y e. { x e. On | ph } -> ( x e. On /\ ph ) ) <-> ( z C_ { x e. On | ph } -> z e. { x e. On | ph } ) ) ) |
| 15 | sbequ | |- ( w = y -> ( [ w / x ] ph <-> [ y / x ] ph ) ) |
|
| 16 | nfcv | |- F/_ x On |
|
| 17 | nfcv | |- F/_ w On |
|
| 18 | nfv | |- F/ w ph |
|
| 19 | nfs1v | |- F/ x [ w / x ] ph |
|
| 20 | sbequ12 | |- ( x = w -> ( ph <-> [ w / x ] ph ) ) |
|
| 21 | 16 17 18 19 20 | cbvrabw | |- { x e. On | ph } = { w e. On | [ w / x ] ph } |
| 22 | 15 21 | elrab2 | |- ( y e. { x e. On | ph } <-> ( y e. On /\ [ y / x ] ph ) ) |
| 23 | 22 | simprbi | |- ( y e. { x e. On | ph } -> [ y / x ] ph ) |
| 24 | 23 | ralimi | |- ( A. y e. x y e. { x e. On | ph } -> A. y e. x [ y / x ] ph ) |
| 25 | 24 1 | syl5 | |- ( x e. On -> ( A. y e. x y e. { x e. On | ph } -> ph ) ) |
| 26 | 25 | anc2li | |- ( x e. On -> ( A. y e. x y e. { x e. On | ph } -> ( x e. On /\ ph ) ) ) |
| 27 | 3 7 14 26 | vtoclgaf | |- ( z e. On -> ( z C_ { x e. On | ph } -> z e. { x e. On | ph } ) ) |
| 28 | 27 | rgen | |- A. z e. On ( z C_ { x e. On | ph } -> z e. { x e. On | ph } ) |
| 29 | tfi | |- ( ( { x e. On | ph } C_ On /\ A. z e. On ( z C_ { x e. On | ph } -> z e. { x e. On | ph } ) ) -> { x e. On | ph } = On ) |
|
| 30 | 2 28 29 | mp2an | |- { x e. On | ph } = On |
| 31 | 30 | eqcomi | |- On = { x e. On | ph } |
| 32 | 31 | reqabi | |- ( x e. On <-> ( x e. On /\ ph ) ) |
| 33 | 32 | simprbi | |- ( x e. On -> ph ) |