This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz.b | |- B = ( Base ` G ) |
|
| telgsumfz.g | |- ( ph -> G e. Abel ) |
||
| telgsumfz.m | |- .- = ( -g ` G ) |
||
| telgsumfz.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| telgsumfz.f | |- ( ph -> A. k e. ( M ... ( N + 1 ) ) A e. B ) |
||
| telgsumfz.l | |- ( k = i -> A = L ) |
||
| telgsumfz.c | |- ( k = ( i + 1 ) -> A = C ) |
||
| telgsumfz.d | |- ( k = M -> A = D ) |
||
| telgsumfz.e | |- ( k = ( N + 1 ) -> A = E ) |
||
| Assertion | telgsumfz | |- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( D .- E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz.b | |- B = ( Base ` G ) |
|
| 2 | telgsumfz.g | |- ( ph -> G e. Abel ) |
|
| 3 | telgsumfz.m | |- .- = ( -g ` G ) |
|
| 4 | telgsumfz.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | telgsumfz.f | |- ( ph -> A. k e. ( M ... ( N + 1 ) ) A e. B ) |
|
| 6 | telgsumfz.l | |- ( k = i -> A = L ) |
|
| 7 | telgsumfz.c | |- ( k = ( i + 1 ) -> A = C ) |
|
| 8 | telgsumfz.d | |- ( k = M -> A = D ) |
|
| 9 | telgsumfz.e | |- ( k = ( N + 1 ) -> A = E ) |
|
| 10 | simpr | |- ( ( ph /\ i e. ( M ... N ) ) -> i e. ( M ... N ) ) |
|
| 11 | 6 | adantl | |- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = i ) -> A = L ) |
| 12 | 10 11 | csbied | |- ( ( ph /\ i e. ( M ... N ) ) -> [_ i / k ]_ A = L ) |
| 13 | 12 | eqcomd | |- ( ( ph /\ i e. ( M ... N ) ) -> L = [_ i / k ]_ A ) |
| 14 | ovexd | |- ( ( ph /\ i e. ( M ... N ) ) -> ( i + 1 ) e. _V ) |
|
| 15 | 7 | adantl | |- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = ( i + 1 ) ) -> A = C ) |
| 16 | 14 15 | csbied | |- ( ( ph /\ i e. ( M ... N ) ) -> [_ ( i + 1 ) / k ]_ A = C ) |
| 17 | 16 | eqcomd | |- ( ( ph /\ i e. ( M ... N ) ) -> C = [_ ( i + 1 ) / k ]_ A ) |
| 18 | 13 17 | oveq12d | |- ( ( ph /\ i e. ( M ... N ) ) -> ( L .- C ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) |
| 19 | 18 | mpteq2dva | |- ( ph -> ( i e. ( M ... N ) |-> ( L .- C ) ) = ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) |
| 20 | 19 | oveq2d | |- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) ) |
| 21 | 1 2 3 4 5 | telgsumfzs | |- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) ) |
| 22 | 4 | elfvexd | |- ( ph -> M e. _V ) |
| 23 | 8 | adantl | |- ( ( ph /\ k = M ) -> A = D ) |
| 24 | 22 23 | csbied | |- ( ph -> [_ M / k ]_ A = D ) |
| 25 | ovexd | |- ( ph -> ( N + 1 ) e. _V ) |
|
| 26 | 9 | adantl | |- ( ( ph /\ k = ( N + 1 ) ) -> A = E ) |
| 27 | 25 26 | csbied | |- ( ph -> [_ ( N + 1 ) / k ]_ A = E ) |
| 28 | 24 27 | oveq12d | |- ( ph -> ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) = ( D .- E ) ) |
| 29 | 20 21 28 | 3eqtrd | |- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( D .- E ) ) |