This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz.b | ||
| telgsumfz.g | |||
| telgsumfz.m | |||
| telgsumfz.n | |||
| telgsumfz.f | |||
| telgsumfz.l | |||
| telgsumfz.c | |||
| telgsumfz.d | |||
| telgsumfz.e | |||
| Assertion | telgsumfz |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz.b | ||
| 2 | telgsumfz.g | ||
| 3 | telgsumfz.m | ||
| 4 | telgsumfz.n | ||
| 5 | telgsumfz.f | ||
| 6 | telgsumfz.l | ||
| 7 | telgsumfz.c | ||
| 8 | telgsumfz.d | ||
| 9 | telgsumfz.e | ||
| 10 | simpr | ||
| 11 | 6 | adantl | |
| 12 | 10 11 | csbied | |
| 13 | 12 | eqcomd | |
| 14 | ovexd | ||
| 15 | 7 | adantl | |
| 16 | 14 15 | csbied | |
| 17 | 16 | eqcomd | |
| 18 | 13 17 | oveq12d | |
| 19 | 18 | mpteq2dva | |
| 20 | 19 | oveq2d | |
| 21 | 1 2 3 4 5 | telgsumfzs | |
| 22 | 4 | elfvexd | |
| 23 | 8 | adantl | |
| 24 | 22 23 | csbied | |
| 25 | ovexd | ||
| 26 | 9 | adantl | |
| 27 | 25 26 | csbied | |
| 28 | 24 27 | oveq12d | |
| 29 | 20 21 28 | 3eqtrd |