This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tcsni | ⊢ ( TC ‘ { 𝐴 } ) = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | snss | ⊢ ( 𝐴 ∈ 𝑥 ↔ { 𝐴 } ⊆ 𝑥 ) |
| 3 | 2 | anbi1i | ⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) ↔ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 4 | 3 | abbii | ⊢ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 5 | 4 | inteqi | ⊢ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 6 | 1 | tc2 | ⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 7 | snex | ⊢ { 𝐴 } ∈ V | |
| 8 | tcvalg | ⊢ ( { 𝐴 } ∈ V → ( TC ‘ { 𝐴 } ) = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 9 | 7 8 | ax-mp | ⊢ ( TC ‘ { 𝐴 } ) = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 10 | 5 6 9 | 3eqtr4ri | ⊢ ( TC ‘ { 𝐴 } ) = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |