This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tcss | ⊢ ( 𝐵 ⊆ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | ssex | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) |
| 3 | tcvalg | ⊢ ( 𝐵 ∈ V → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐵 ⊆ 𝐴 → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 5 | sstr2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ 𝑥 → 𝐵 ⊆ 𝑥 ) ) | |
| 6 | 5 | anim1d | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
| 7 | 6 | ss2abdv | ⊢ ( 𝐵 ⊆ 𝐴 → { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 8 | intss | ⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ⊆ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 10 | tcvalg | ⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 11 | 1 10 | ax-mp | ⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 12 | 9 11 | sseqtrrdi | ⊢ ( 𝐵 ⊆ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) ) |
| 13 | 4 12 | eqsstrd | ⊢ ( 𝐵 ⊆ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |