This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | |- A e. _V |
|
| Assertion | tcsni | |- ( TC ` { A } ) = ( ( TC ` A ) u. { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | |- A e. _V |
|
| 2 | 1 | snss | |- ( A e. x <-> { A } C_ x ) |
| 3 | 2 | anbi1i | |- ( ( A e. x /\ Tr x ) <-> ( { A } C_ x /\ Tr x ) ) |
| 4 | 3 | abbii | |- { x | ( A e. x /\ Tr x ) } = { x | ( { A } C_ x /\ Tr x ) } |
| 5 | 4 | inteqi | |- |^| { x | ( A e. x /\ Tr x ) } = |^| { x | ( { A } C_ x /\ Tr x ) } |
| 6 | 1 | tc2 | |- ( ( TC ` A ) u. { A } ) = |^| { x | ( A e. x /\ Tr x ) } |
| 7 | snex | |- { A } e. _V |
|
| 8 | tcvalg | |- ( { A } e. _V -> ( TC ` { A } ) = |^| { x | ( { A } C_ x /\ Tr x ) } ) |
|
| 9 | 7 8 | ax-mp | |- ( TC ` { A } ) = |^| { x | ( { A } C_ x /\ Tr x ) } |
| 10 | 5 6 9 | 3eqtr4ri | |- ( TC ` { A } ) = ( ( TC ` A ) u. { A } ) |