This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphtopn.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| tcphtopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | tcphtopn | ⊢ ( 𝑊 ∈ 𝑉 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphtopn.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 3 | tcphtopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 5 | 4 | tcphex | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V |
| 6 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | 1 4 6 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 8 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 9 | 7 2 8 | tngtopn | ⊢ ( ( 𝑊 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) ) |
| 10 | 5 9 | mpan2 | ⊢ ( 𝑊 ∈ 𝑉 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) ) |
| 11 | 3 10 | eqtr4id | ⊢ ( 𝑊 ∈ 𝑉 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |