This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphtopn.d | |- D = ( dist ` G ) |
||
| tcphtopn.j | |- J = ( TopOpen ` G ) |
||
| Assertion | tcphtopn | |- ( W e. V -> J = ( MetOpen ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphtopn.d | |- D = ( dist ` G ) |
|
| 3 | tcphtopn.j | |- J = ( TopOpen ` G ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | 4 | tcphex | |- ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V |
| 6 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 7 | 1 4 6 | tcphval | |- G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
| 8 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 9 | 7 2 8 | tngtopn | |- ( ( W e. V /\ ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` G ) ) |
| 10 | 5 9 | mpan2 | |- ( W e. V -> ( MetOpen ` D ) = ( TopOpen ` G ) ) |
| 11 | 3 10 | eqtr4id | |- ( W e. V -> J = ( MetOpen ` D ) ) |