This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the symmetric group function at A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 28-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgval.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgval.2 | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } | ||
| Assertion | symgval | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgval.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgval.2 | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } | |
| 3 | df-symg | ⊢ SymGrp = ( 𝑥 ∈ V ↦ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) ) | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ V → SymGrp = ( 𝑥 ∈ V ↦ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( EndoFMnd ‘ 𝑥 ) = ( EndoFMnd ‘ 𝐴 ) ) | |
| 6 | eqidd | ⊢ ( 𝑥 = 𝐴 → ℎ = ℎ ) | |
| 7 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 8 | 6 7 7 | f1oeq123d | ⊢ ( 𝑥 = 𝐴 → ( ℎ : 𝑥 –1-1-onto→ 𝑥 ↔ ℎ : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 9 | 8 | abbidv | ⊢ ( 𝑥 = 𝐴 → { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } = { ℎ ∣ ℎ : 𝐴 –1-1-onto→ 𝐴 } ) |
| 10 | f1oeq1 | ⊢ ( ℎ = 𝑥 → ( ℎ : 𝐴 –1-1-onto→ 𝐴 ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) | |
| 11 | 10 | cbvabv | ⊢ { ℎ ∣ ℎ : 𝐴 –1-1-onto→ 𝐴 } = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } |
| 12 | 9 11 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 13 | 12 2 | eqtr4di | ⊢ ( 𝑥 = 𝐴 → { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } = 𝐵 ) |
| 14 | 5 13 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = 𝐴 ) → ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) ) |
| 16 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
| 17 | ovexd | ⊢ ( 𝐴 ∈ V → ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) ∈ V ) | |
| 18 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ V | |
| 19 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 20 | nfcv | ⊢ Ⅎ 𝑥 ( EndoFMnd ‘ 𝐴 ) | |
| 21 | nfcv | ⊢ Ⅎ 𝑥 ↾s | |
| 22 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } | |
| 23 | 2 22 | nfcxfr | ⊢ Ⅎ 𝑥 𝐵 |
| 24 | 20 21 23 | nfov | ⊢ Ⅎ 𝑥 ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) |
| 25 | 4 15 16 17 18 19 24 | fvmptdf | ⊢ ( 𝐴 ∈ V → ( SymGrp ‘ 𝐴 ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) ) |
| 26 | ress0 | ⊢ ( ∅ ↾s 𝐵 ) = ∅ | |
| 27 | 26 | a1i | ⊢ ( ¬ 𝐴 ∈ V → ( ∅ ↾s 𝐵 ) = ∅ ) |
| 28 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = ∅ ) | |
| 29 | 28 | oveq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) ) |
| 30 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( SymGrp ‘ 𝐴 ) = ∅ ) | |
| 31 | 27 29 30 | 3eqtr4rd | ⊢ ( ¬ 𝐴 ∈ V → ( SymGrp ‘ 𝐴 ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) ) |
| 32 | 25 31 | pm2.61i | ⊢ ( SymGrp ‘ 𝐴 ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) |
| 33 | 1 32 | eqtri | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s 𝐵 ) |