This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015) (Proof shortened by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgbas | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } | |
| 4 | 1 3 | symgval | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 5 | 4 | eqcomi | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) = 𝐺 |
| 6 | 5 | fveq2i | ⊢ ( Base ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) ) = ( Base ‘ 𝐺 ) |
| 7 | f1of | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) | |
| 8 | 7 | ss2abi | ⊢ { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ⊆ { 𝑥 ∣ 𝑥 : 𝐴 ⟶ 𝐴 } |
| 9 | eqid | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) | |
| 11 | 9 10 | efmndbasabf | ⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = { 𝑥 ∣ 𝑥 : 𝐴 ⟶ 𝐴 } |
| 12 | 8 11 | sseqtrri | ⊢ { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ⊆ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) |
| 13 | eqid | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) | |
| 14 | 13 10 | ressbas2 | ⊢ ( { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ⊆ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) → { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } = ( Base ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) |
| 15 | 12 14 | ax-mp | ⊢ { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } = ( Base ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } ) ) |
| 16 | 6 15 2 | 3eqtr4ri | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 : 𝐴 –1-1-onto→ 𝐴 } |