This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of fvmptd using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptd.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) | |
| fvmptd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | ||
| fvmptd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| fvmptd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| fvmptdf.p | ⊢ Ⅎ 𝑥 𝜑 | ||
| fvmptdf.a | ⊢ Ⅎ 𝑥 𝐴 | ||
| fvmptdf.c | ⊢ Ⅎ 𝑥 𝐶 | ||
| Assertion | fvmptdf | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) | |
| 2 | fvmptd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | |
| 3 | fvmptd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 4 | fvmptd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | fvmptdf.p | ⊢ Ⅎ 𝑥 𝜑 | |
| 6 | fvmptdf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 7 | fvmptdf.c | ⊢ Ⅎ 𝑥 𝐶 | |
| 8 | 1 | fveq1d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 9 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 11 | 7 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 ) |
| 12 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 14 | 6 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
| 15 | 5 14 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐴 ) |
| 16 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → Ⅎ 𝑥 𝐶 ) |
| 17 | vex | ⊢ 𝑦 ∈ V | |
| 18 | 17 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝑦 ∈ V ) |
| 19 | eqtr | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑥 = 𝐴 ) | |
| 20 | 19 | ancoms | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝐴 ) |
| 21 | 20 2 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐴 ∧ 𝑥 = 𝑦 ) ) → 𝐵 = 𝐶 ) |
| 22 | 21 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
| 23 | 15 16 18 22 | csbiedf | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 24 | 5 10 11 3 13 23 | csbie2df | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 25 | 24 4 | eqeltrd | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 26 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 27 | 26 | fvmpts | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 28 | 3 25 27 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 29 | 8 28 24 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |