This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the symmetric group on set x . We represent the group as the set of one-to-one onto functions from x to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by AV, 28-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-symg | ⊢ SymGrp = ( 𝑥 ∈ V ↦ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csymg | ⊢ SymGrp | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | cefmnd | ⊢ EndoFMnd | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | 4 3 | cfv | ⊢ ( EndoFMnd ‘ 𝑥 ) |
| 6 | cress | ⊢ ↾s | |
| 7 | vh | ⊢ ℎ | |
| 8 | 7 | cv | ⊢ ℎ |
| 9 | 4 4 8 | wf1o | ⊢ ℎ : 𝑥 –1-1-onto→ 𝑥 |
| 10 | 9 7 | cab | ⊢ { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } |
| 11 | 5 10 6 | co | ⊢ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) ) |
| 13 | 0 12 | wceq | ⊢ SymGrp = ( 𝑥 ∈ V ↦ ( ( EndoFMnd ‘ 𝑥 ) ↾s { ℎ ∣ ℎ : 𝑥 –1-1-onto→ 𝑥 } ) ) |