This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the symmetric group on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015) (Proof revised by AV, 30-Mar-2024.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| Assertion | symgtset | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | eqid | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) | |
| 3 | 2 | efmndtset | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 1 4 | symgbas | ⊢ ( Base ‘ 𝐺 ) = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 6 | fvexd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ∈ V ) | |
| 7 | 5 6 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V ) |
| 8 | eqid | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) | |
| 9 | eqid | ⊢ ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) | |
| 10 | 8 9 | resstset | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V → ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) |
| 12 | eqid | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } | |
| 13 | 1 12 | symgval | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 14 | 13 | eqcomi | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = 𝐺 |
| 15 | 14 | fveq2i | ⊢ ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) |
| 16 | 15 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) ) |
| 17 | 3 11 16 | 3eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) ) |