This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the monoid of endofunctions on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndtset.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | efmndtset | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | fvex | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ V | |
| 3 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } | |
| 4 | 3 | topgrptset | ⊢ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ V → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 5 | 2 4 | ax-mp | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
| 6 | eqid | ⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) | |
| 7 | eqid | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 8 | eqid | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 9 | 1 6 7 8 | efmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 = { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( TopSet ‘ 𝐺 ) = ( TopSet ‘ { 〈 ( Base ‘ ndx ) , ( 𝐴 ↑m 𝐴 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
| 11 | 5 10 | eqtr4id | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( TopSet ‘ 𝐺 ) ) |