This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the symmetric group on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015) (Proof revised by AV, 30-Mar-2024.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| Assertion | symgtset | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| 2 | eqid | |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
|
| 3 | 2 | efmndtset | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` ( EndoFMnd ` A ) ) ) |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 4 | symgbas | |- ( Base ` G ) = { f | f : A -1-1-onto-> A } |
| 6 | fvexd | |- ( A e. V -> ( Base ` G ) e. _V ) |
|
| 7 | 5 6 | eqeltrrid | |- ( A e. V -> { f | f : A -1-1-onto-> A } e. _V ) |
| 8 | eqid | |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
|
| 9 | eqid | |- ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( EndoFMnd ` A ) ) |
|
| 10 | 8 9 | resstset | |- ( { f | f : A -1-1-onto-> A } e. _V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) |
| 11 | 7 10 | syl | |- ( A e. V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) |
| 12 | eqid | |- { f | f : A -1-1-onto-> A } = { f | f : A -1-1-onto-> A } |
|
| 13 | 1 12 | symgval | |- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 14 | 13 | eqcomi | |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = G |
| 15 | 14 | fveq2i | |- ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) |
| 16 | 15 | a1i | |- ( A e. V -> ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) ) |
| 17 | 3 11 16 | 3eqtrd | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` G ) ) |