This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | insubm | ⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrcl | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) | |
| 2 | ssinss1 | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝑀 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ) |
| 4 | 3 | ad2antrl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ) |
| 5 | elin | ⊢ ( ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) | |
| 6 | 5 | simplbi2com | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 → ( ( 0g ‘ 𝑀 ) ∈ 𝐴 → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ∈ 𝐴 → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 8 | 7 | com12 | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐴 → ( ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) → ( ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 12 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 13 | elin | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 14 | 12 13 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 15 | oveq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ) |
| 17 | oveq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) ) |
| 19 | simpl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
| 21 | eqidd | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑎 = 𝑥 ) → 𝐴 = 𝐴 ) | |
| 22 | simpl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐴 ) |
| 24 | 16 18 20 21 23 | rspc2vd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) ) |
| 25 | 24 | com12 | ⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) ) |
| 27 | 26 | ad2antrl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐴 ) |
| 29 | 15 | eleq1d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 30 | 17 | eleq1d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 31 | simpr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 32 | 31 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 33 | eqidd | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑎 = 𝑥 ) → 𝐵 = 𝐵 ) | |
| 34 | simpr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 35 | 34 | adantl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 36 | 29 30 32 33 35 | rspc2vd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 37 | 36 | com12 | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) ) |
| 41 | 40 | imp | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 42 | 28 41 | elind | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 44 | 14 43 | biimtrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 45 | 44 | ralrimivv | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 46 | 4 11 45 | 3jca | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 47 | 46 | ex | ⊢ ( 𝑀 ∈ Mnd → ( ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 48 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 49 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 50 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 51 | 48 49 50 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ) ) |
| 52 | 48 49 50 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) |
| 53 | 51 52 | anbi12d | ⊢ ( 𝑀 ∈ Mnd → ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐴 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) ) ) |
| 54 | 48 49 50 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝐴 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 55 | 47 53 54 | 3imtr4d | ⊢ ( 𝑀 ∈ Mnd → ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ) ) |
| 56 | 55 | expd | ⊢ ( 𝑀 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ) ) ) |
| 57 | 1 56 | mpcom | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ) ) |
| 58 | 57 | imp | ⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( SubMnd ‘ 𝑀 ) ) |