This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Proof shortened by AV, 19-Feb-2024) (Revised by AV, 29-Mar-2024) (Proof shortened by AV, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgplusg.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgplusg.2 | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | ||
| symgplusg.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | symgplusg | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgplusg.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgplusg.2 | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | |
| 3 | symgplusg.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | f1osetex | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V | |
| 5 | eqid | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) | |
| 6 | eqid | ⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) | |
| 7 | 5 6 | ressplusg | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V → ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) |
| 8 | 4 7 | ax-mp | ⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) |
| 9 | eqid | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } | |
| 10 | 1 9 | symgval | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 11 | 10 | eqcomi | ⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = 𝐺 |
| 12 | 11 | fveq2i | ⊢ ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) = ( +g ‘ 𝐺 ) |
| 13 | 8 12 | eqtri | ⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ 𝐺 ) |
| 14 | eqid | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) | |
| 15 | eqid | ⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) | |
| 16 | 14 15 | efmndbas | ⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝐴 ↑m 𝐴 ) |
| 17 | 2 16 | eqtr4i | ⊢ 𝐵 = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) |
| 18 | 14 17 6 | efmndplusg | ⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 19 | 3 13 18 | 3eqtr2i | ⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |