This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Proof shortened by AV, 19-Feb-2024) (Revised by AV, 29-Mar-2024) (Proof shortened by AV, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgplusg.1 | |- G = ( SymGrp ` A ) |
|
| symgplusg.2 | |- B = ( A ^m A ) |
||
| symgplusg.3 | |- .+ = ( +g ` G ) |
||
| Assertion | symgplusg | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgplusg.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgplusg.2 | |- B = ( A ^m A ) |
|
| 3 | symgplusg.3 | |- .+ = ( +g ` G ) |
|
| 4 | f1osetex | |- { f | f : A -1-1-onto-> A } e. _V |
|
| 5 | eqid | |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
|
| 6 | eqid | |- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( EndoFMnd ` A ) ) |
|
| 7 | 5 6 | ressplusg | |- ( { f | f : A -1-1-onto-> A } e. _V -> ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) |
| 8 | 4 7 | ax-mp | |- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) |
| 9 | eqid | |- { f | f : A -1-1-onto-> A } = { f | f : A -1-1-onto-> A } |
|
| 10 | 1 9 | symgval | |- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) |
| 11 | 10 | eqcomi | |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = G |
| 12 | 11 | fveq2i | |- ( +g ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( +g ` G ) |
| 13 | 8 12 | eqtri | |- ( +g ` ( EndoFMnd ` A ) ) = ( +g ` G ) |
| 14 | eqid | |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
|
| 15 | eqid | |- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
|
| 16 | 14 15 | efmndbas | |- ( Base ` ( EndoFMnd ` A ) ) = ( A ^m A ) |
| 17 | 2 16 | eqtr4i | |- B = ( Base ` ( EndoFMnd ` A ) ) |
| 18 | 14 17 6 | efmndplusg | |- ( +g ` ( EndoFMnd ` A ) ) = ( f e. B , g e. B |-> ( f o. g ) ) |
| 19 | 3 13 18 | 3eqtr2i | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |