This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixf.d | ⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) | ||
| Assertion | symgfixelsi | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄 ) → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 4 | symgfixf.d | ⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) | |
| 5 | 1 2 | symgfixelq | ⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |
| 6 | f1of1 | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 : 𝑁 –1-1→ 𝑁 ) | |
| 7 | 6 | ad2antrl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐹 : 𝑁 –1-1→ 𝑁 ) |
| 8 | difssd | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) | |
| 9 | f1ores | ⊢ ( ( 𝐹 : 𝑁 –1-1→ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) → ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 11 | 4 | reseq2i | ⊢ ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 13 | 4 | a1i | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐷 = ( 𝑁 ∖ { 𝐾 } ) ) |
| 14 | f1ofo | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 : 𝑁 –onto→ 𝑁 ) | |
| 15 | foima | ⊢ ( 𝐹 : 𝑁 –onto→ 𝑁 → ( 𝐹 “ 𝑁 ) = 𝑁 ) | |
| 16 | 15 | eqcomd | ⊢ ( 𝐹 : 𝑁 –onto→ 𝑁 → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
| 19 | sneq | ⊢ ( 𝐾 = ( 𝐹 ‘ 𝐾 ) → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) | |
| 20 | 19 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝐾 ) = 𝐾 → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) |
| 21 | 20 | ad2antll | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) |
| 22 | f1ofn | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 Fn 𝑁 ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐹 Fn 𝑁 ) |
| 24 | simpl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐾 ∈ 𝑁 ) | |
| 25 | fnsnfv | ⊢ ( ( 𝐹 Fn 𝑁 ∧ 𝐾 ∈ 𝑁 ) → { ( 𝐹 ‘ 𝐾 ) } = ( 𝐹 “ { 𝐾 } ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { ( 𝐹 ‘ 𝐾 ) } = ( 𝐹 “ { 𝐾 } ) ) |
| 27 | 21 26 | eqtrd | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { 𝐾 } = ( 𝐹 “ { 𝐾 } ) ) |
| 28 | 18 27 | difeq12d | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝑁 ∖ { 𝐾 } ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) |
| 29 | dff1o2 | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ↔ ( 𝐹 Fn 𝑁 ∧ Fun ◡ 𝐹 ∧ ran 𝐹 = 𝑁 ) ) | |
| 30 | 29 | simp2bi | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → Fun ◡ 𝐹 ) |
| 31 | 30 | ad2antrl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → Fun ◡ 𝐹 ) |
| 32 | imadif | ⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) |
| 34 | 28 13 33 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐷 = ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 35 | 12 13 34 | f1oeq123d | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ↔ ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 36 | 10 35 | mpbird | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 37 | 36 | ancoms | ⊢ ( ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ∧ 𝐾 ∈ 𝑁 ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 38 | 1 2 3 4 | symgfixels | ⊢ ( 𝐹 ∈ 𝑄 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 39 | 37 38 | imbitrrid | ⊢ ( 𝐹 ∈ 𝑄 → ( ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ∧ 𝐾 ∈ 𝑁 ) → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) |
| 40 | 39 | expd | ⊢ ( 𝐹 ∈ 𝑄 → ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) ) |
| 41 | 5 40 | sylbid | ⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ 𝑄 → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) ) |
| 42 | 41 | pm2.43i | ⊢ ( 𝐹 ∈ 𝑄 → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) |
| 43 | 42 | impcom | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄 ) → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) |