This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixf.d | ⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) | ||
| Assertion | symgfixels | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 4 | symgfixf.d | ⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) | |
| 5 | 3 | eleq2i | ⊢ ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 6 | 5 | a1i | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) ) |
| 7 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) ∈ V ) | |
| 8 | eqid | ⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 9 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 10 | 8 9 | elsymgbas2 | ⊢ ( ( 𝐹 ↾ 𝐷 ) ∈ V → ( ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 12 | eqidd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ 𝐷 ) ) | |
| 13 | 4 | a1i | ⊢ ( 𝐹 ∈ 𝑉 → 𝐷 = ( 𝑁 ∖ { 𝐾 } ) ) |
| 14 | 13 | eqcomd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑁 ∖ { 𝐾 } ) = 𝐷 ) |
| 15 | 12 14 14 | f1oeq123d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 16 | 6 11 15 | 3bitrd | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |