This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrpnf | |- ( ( A C_ RR* /\ +oo e. A ) -> sup ( A , RR* , < ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ RR* -> ( y e. A -> y e. RR* ) ) |
|
| 2 | pnfnlt | |- ( y e. RR* -> -. +oo < y ) |
|
| 3 | 1 2 | syl6 | |- ( A C_ RR* -> ( y e. A -> -. +oo < y ) ) |
| 4 | 3 | ralrimiv | |- ( A C_ RR* -> A. y e. A -. +oo < y ) |
| 5 | breq2 | |- ( z = +oo -> ( y < z <-> y < +oo ) ) |
|
| 6 | 5 | rspcev | |- ( ( +oo e. A /\ y < +oo ) -> E. z e. A y < z ) |
| 7 | 6 | ex | |- ( +oo e. A -> ( y < +oo -> E. z e. A y < z ) ) |
| 8 | 7 | ralrimivw | |- ( +oo e. A -> A. y e. RR ( y < +oo -> E. z e. A y < z ) ) |
| 9 | 4 8 | anim12i | |- ( ( A C_ RR* /\ +oo e. A ) -> ( A. y e. A -. +oo < y /\ A. y e. RR ( y < +oo -> E. z e. A y < z ) ) ) |
| 10 | pnfxr | |- +oo e. RR* |
|
| 11 | supxr | |- ( ( ( A C_ RR* /\ +oo e. RR* ) /\ ( A. y e. A -. +oo < y /\ A. y e. RR ( y < +oo -> E. z e. A y < z ) ) ) -> sup ( A , RR* , < ) = +oo ) |
|
| 12 | 10 11 | mpanl2 | |- ( ( A C_ RR* /\ ( A. y e. A -. +oo < y /\ A. y e. RR ( y < +oo -> E. z e. A y < z ) ) ) -> sup ( A , RR* , < ) = +oo ) |
| 13 | 9 12 | syldan | |- ( ( A C_ RR* /\ +oo e. A ) -> sup ( A , RR* , < ) = +oo ) |