This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrmnf | |- ( A C_ RR* -> sup ( ( A u. { -oo } ) , RR* , < ) = sup ( A , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( A u. { -oo } ) = ( { -oo } u. A ) |
|
| 2 | 1 | supeq1i | |- sup ( ( A u. { -oo } ) , RR* , < ) = sup ( ( { -oo } u. A ) , RR* , < ) |
| 3 | mnfxr | |- -oo e. RR* |
|
| 4 | snssi | |- ( -oo e. RR* -> { -oo } C_ RR* ) |
|
| 5 | 3 4 | mp1i | |- ( A C_ RR* -> { -oo } C_ RR* ) |
| 6 | id | |- ( A C_ RR* -> A C_ RR* ) |
|
| 7 | xrltso | |- < Or RR* |
|
| 8 | supsn | |- ( ( < Or RR* /\ -oo e. RR* ) -> sup ( { -oo } , RR* , < ) = -oo ) |
|
| 9 | 7 3 8 | mp2an | |- sup ( { -oo } , RR* , < ) = -oo |
| 10 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 11 | mnfle | |- ( sup ( A , RR* , < ) e. RR* -> -oo <_ sup ( A , RR* , < ) ) |
|
| 12 | 10 11 | syl | |- ( A C_ RR* -> -oo <_ sup ( A , RR* , < ) ) |
| 13 | 9 12 | eqbrtrid | |- ( A C_ RR* -> sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) |
| 14 | supxrun | |- ( ( { -oo } C_ RR* /\ A C_ RR* /\ sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) |
|
| 15 | 5 6 13 14 | syl3anc | |- ( A C_ RR* -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) |
| 16 | 2 15 | eqtrid | |- ( A C_ RR* -> sup ( ( A u. { -oo } ) , RR* , < ) = sup ( A , RR* , < ) ) |