This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrbnd1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex | ⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) | |
| 2 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) | |
| 4 | xrlenlt | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
| 6 | 5 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
| 7 | 6 | rexbidva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
| 8 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) | |
| 9 | 7 8 | bitr2di | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 10 | 9 | ralbidva | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 11 | 1 10 | bitr3id | ⊢ ( 𝐴 ⊆ ℝ* → ( ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 12 | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 13 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 14 | nltpnft | ⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 16 | 11 12 15 | 3bitrd | ⊢ ( 𝐴 ⊆ ℝ* → ( ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 17 | 16 | con4bid | ⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |